The Apple A15 SoC Performance Review: Faster & More Efficient
by Andrei Frumusanu on October 4, 2021 9:30 AM EST- Posted in
- Mobile
- Apple
- Smartphones
- Apple A15
GPU Performance - Great GPU, So-So Thermals Designs
The GPUs on the A15 iPhones are interesting, this is the first time that Apple has functionally segmented the GPU configurations on their SoCs within the iPhone device range, with the iPhone 13 mini and iPhone 13 receiving a 4-core GPU, similar to the A14 devices last year, while the 13 Pro and 13 Pro Max receive a 5-core variant of the SoC. It’s still the same SoC and silicon chip in both cases, just that Apple is disabling one GPU core on the non-Pro models, possibly for yield reasons?
Apple’s performance figures for the GPU were also a bit intriguing in that there weren’t any generational comparisons, just a “+30%” and “+50%” figure against the competition. I initially theorized to mean +10% and +28% against the A14, so let’s see if that pans out:
In the 3DMark Wild Life test, we see the 5-core A15 leap the A15 by +30%, while the 4-core showcases a +14% improvement, so quite close to what we predicted. The peak performance here is essentially double that of the nearest competitor, so Apple is likely low-balling things again.
In terms of sustained performance, the new chips continue to showcase a large difference in what they achieve with a cold phone versus a heated phone, interestingly, the 4-core iPhone 13 lands a bit ahead of the 13 Pro here, more on this later.
In Basemark GPU, the 13 Pro lands in at +28% over the 12 Pro, with the 4-core iPhone 13 only being slightly slower. Again, the phones throttle hard, however still manage to land with sustained performances well above the peak performances of the competition.
In GFXBench Aztec High, the 13 Pro lands in at a massive +46% performance advantage over the 12 Pro, while the 13 showcases a +19% boost. These are numbers that are above the expectations – in terms of microarchitectural changes the new A15 GPU appears to adopt the same double FP32 throughput as on the M1 GPU, seemingly adding extra units alongside the existing FP32/double-rate FP16 ALUs. The increased 32MB SLC will also likely help a lot with GPU bandwidth and hit-rates, so these two changes seem to be the most obvious explanations for the massive increases.
In terms of power and efficiency, I’m also migrating away from tables to bubble charts to better represent the spatial positioning of the various SoCs.
I’d also like to note here that I had went ahead and re-measured the A13 and A14 phones in their peak performance states, showcasing larger power figures than the ones we’ve published in the past. Reason for this is the methodology where we’re only able to measure via input power of the phone, as we cannot dismantle our samples and are lacking PMIC fuelgauge access otherwise. The iPhone 13 figures here are generally hopefully correct as I measured other scenarios up to 9W, however there is still a bit of doubt on whether the phone is drawing from battery or not. The sustained power figures have a higher reliability.
As noted, the A15’s peak performance is massively better, but also appearing that the phone is improving the power draw slightly compared to the A14, meaning we see large efficiency improvements.
Both the 13 and 13 Pro throttle quite quickly after a few minutes of load, but generally at different power points. The 13 Pro with its 5-core GPU throttles down to around 3W, while the 13 goes to around 3.6W.
In Aztec Normal, we’re seeing similar relative positioning both in performance and efficiency. The iPhones 13 and 13 Pro are quite closer in performance than expected, due to different throttling levels.
Finally, in Manhattan 3.1, the A15’s 5-core goes up +32%, while the 4-core goes up +18%. The sustained performance isn’t notably different between the two, and also represent smaller improvements over the iPhone 11 and 12 series.
Impressive GPU Performance, but quite limited thermals
Our results here showcase two sides of a coin: In terms of peak performance, the new A15 GPU is absolutely astonishing, and showcasing again improvements that are well above Apple’s marketing claims. The new GPU architecture, and possibly the new SLC allow for fantastic gains in performance, as well as efficiency.
What’s not so great, is the phone’s throttling. Particularly, we seem to be seeing quite reduced power levels on the iPhone 13 Pro, compared to the iPhone 13 as well as previous generation iPhones.
Source: 微机分WekiHome
The 13 Pro models this year come with a new PCB design, that’s even denser than what we’ve had on the previous generations, in order to facilitate the larger battery and new camera modules. What’s been extremely perplexing with Apple’s motherboard designs has been the fact that since they employed dual-layer “sandwich” PCBs, is that they’re packaging the SoC on the inside of the two soldered boards. This comes in contrast to other vendors such as Samsung, who also have adopted the “sandwich” PCB, but the SoC is located on the outer side of the assembly, making direct contact with the heat spreader and display mid-frame.
There are reports of the new iPhones throttling more under gaming and cellular connectivity – well, I’m sure that having the modem directly opposite the SoC inside the sandwich is a contributor to this situation. The iPhone 13 Pro showcasing lower sustained power levels may be tied to the new PCB design, and Apple’s overall iPhone thermal design is definitely amongst the worst out there, as it doesn’t do a good job of spreading the heat throughout the body of the phone, achieving a SoC thermal envelope that’s far smaller than the actual device thermal envelope.
No Apples to Apples in Gaming
In terms of general gaming performance, I’ll also want to make note of a few things – the new iPhones, even with their somewhat limited thermal capacity, are still vastly faster than give out a better gaming experience than competitive phones. Lately benchmarking actual games has been something that has risen in popularity, and generally, I’m all for that, however there are just some fundamental inconsistencies that make direct game comparisons not empirically viable to come to SoC conclusions.
Take Genshin Impact for example, unarguably the #1 AAA mobile game out there, and also one of the most performance demanding titles in the market right now, comparing the visual fidelity on a Galaxy S21 Ultra (Snapdragon 888), Mi 11 Ultra, and the iPhone 13 Pro Max:
Galaxy S21 Ultra - Snapdragon 888
Even though the S21 Ultra and the Mi 11 Ultra both feature the same SoC, they have very different characteristics in terms of thermals. The S21 Ultra generally sustains about 3.5W total device power under the same conditions, while the Mi 11 Ultra will hover between 5-6W, and a much hotter phone. The difference between the two not only exhibits itself in the performance of the game, but also in the visual fidelity, as the S21 Ultra is running much lower resolution due to the game having a dynamic resolution scaling (both phones had the exact same game settings).
The comparison between Android phones and iPhones gets even more complicated in that even with the same game setting, the iPhones still have slightly higher resolution, and visual effects that are just outright missing from the Android variant of the game. The visual fidelity of the game is just much higher on Apple’s devices due to the superior shading and features.
In general, this is one reason while I’m apprehensive of publishing real game benchmarks as it’s just a false comparison and can lead to misleading conclusions. We use specifically designed benchmarks to achieve a “ground truth” in terms of performance, especially in the context of SoCs, GPUs, and architectures.
The A15 continues to cement Apple’s dominance in mobile gaming. We’re looking forward to the next-gen competition, especially RDNA-powered Exynos phones next year, but so far it looks like Apple has an extremely comfortable lead to not have to worry much.
204 Comments
View All Comments
techconc - Tuesday, October 5, 2021 - link
Agreed. Google did some early pioneering work with computational photography. However, unlike you, I don’t think most Android users understand just how far Apple has pushed in these areas, especially with regard to real time previews that require more processing power than is available on Android devices. This year’s “cinema mode” is just another example of that.Apple focuses on features and then designs silicon around that. Most others see what’s available in silicon and then decide which features they can add.
Nicon0s - Saturday, October 16, 2021 - link
>I don’t think most Android users understand just how far Apple has pushed in these areas, especially with regard to real time previews that require more processing power than is available on Android devices.I don't think you understand what you are taking about. Real time preview was implemented on Pixel 4 with the old Snapdragon 855. You are just trying to make it seem a much bigger deal that it is.
What's Apple has pushed for is to match camera software features implemented by Google and other Android manufacturers.
techconc - Monday, October 18, 2021 - link
Yeah, YEARS after iPhones have had this feature because Android phones have been anemic by comparison in terms of processing capabilities. The same with Apple adding this feature for video via Cinema mode. The point being, you're attempting to make it sound as if Android has completely led and pioneered computational photography and that's not true. Google has led in some areas, Apple has led in others. If you think computational photography is an area where Android devices currently lead, then don't really know what you're talking about.Nicon0s - Tuesday, October 19, 2021 - link
"Yeah, YEARS after iPhones have had this feature because Android phones have been anemic by comparison in terms of processing capabilities. "That's only what you think. That live preview is mostly dependent on the ISP anyway, which is the one doing the processing.
"The same with Apple adding this feature for video via Cinema mode."
A boring, pointless feature most won't use.
"The point being, you're attempting to make it sound as if Android has completely led and pioneered computational photography and that's not true. "
It is true. The advancements in terms of computational photography that we get with modern smartphones today were lead by Android manufacturers, Apple only followed. I still remember how apple fanboys all over the interned claimed that Google faked the iphone photo when they introduced Night Sight with Pixel 3. Night Sight was better than it seemed possible changing the paradigm when taking photos in low light.
You want to see another slew of new photo features, take a look at the Pixel 6 announcement. While apple introduced what? Fake video blur? LoL
" If you think computational photography is an area where Android devices currently lead, then don't really know what you're talking about."
Actually I'm the only one that knows what hes talking about.
Nicon0s - Saturday, October 16, 2021 - link
>A key differences is that the SE 2020 does computational photography/videography in real time, which necessitates a decently powerful professor to execute those tasks? The Pixel 4a doesn’t have Live HDR in preview/during recording when recording videos (only in stills), nor does it have real-time Portrait Mode/bokeh control simultaneously with Live HDR nor something like Portrait Lighting control before taking a pic?What's the most important is the results.
Also I'm pretty sure the 4a can approximate the HDR results in real time in the viewfinder, which is not really a big deal. I've seen it on other mid-range Androids as well.
The idea is you can have very decent computational photography even on slower phones in terms of CPU and GPU while Apple does intentionally cripple the capabilities of some of their phones, like lack of night mode on the SE, heck even on the iphone X night, mode should be possible no problem
>The 4a is great for the price and despite using a much slower processor, it has a pretty good camera. But this also makes it have disadvantages—and this is shown across the Pixel lineup, including the 5.
Honestly I don't see any disadvantages because of the performance vs pretty much any phone around it's price range so including the SE.
techconc - Monday, October 18, 2021 - link
>What's the most important is the results.Yeah, and seeing live previews helps with a photographer's composition and actually achieve those results. Without proper live previews, better results are more a matter of luck than skill.
Nicon0s - Tuesday, October 19, 2021 - link
"Yeah, and seeing live previews helps with a photographer's composition and actually achieve those results. Without proper live previews, better results are more a matter of luck than skill."Nonsense, you don't really understand photography. Like I've said what matter are the result. If I point my phone at the same subject and don't get an "approximated HDR result" in the live preview doesn't mean I'm going to take a worse photo or that I generally take worse photos.
Blark64 - Monday, October 11, 2021 - link
>The road for computational photography was paved by Android smaprhones not Apple.Computational photography on the Pixel 4a with the very old SD 730 is better than on an iphone SE 2020 for example.
Your historic perspective on computational photography is, well, shortsighted. Computational photography as a discipline is decades old (emerging from the fields of computer vision and digital imaging), and I was using computational photography apps on my iPhone 4 in 2010.
Nicon0s - Saturday, October 16, 2021 - link
We are taking about modern phones and modern solutions not the start of computational photography. Apple's camera software evolved as a reaction to the excelent camera features implemented in Android phones. It's not your iphone 4 that made computational photography popular and desirable it's Android manufacturersNicon0s - Tuesday, October 5, 2021 - link
>I believe Apple can mint money by selling their SOCs to Android smartphone manufacturers.I would really like to see that but more for the cost perspective.
Things to consider: it doesn't have a model so additional cost.
Need for hardware support as it's a new platform, support for developing the motherboard.
Need for support for software optimisations/ camera optimisations etc.
Need for support for drivers, when OEMs buy an SOC they buy it with driver support for a certain amount of years and this influences the final price.
All in all an A15 would probably cost an Android OEM a few times more than a Qualcomm SOC. So the real question is: would it be worth it?