One of the constant themes of 2019 has been to ask AMD employees about the future of its Threadripper line of products. Since the start of the year we’ve seen AMD advertise for a new head of workstation products, we’ve seen AMD accidentally use an old roadmap slide which didn’t have Threadripper listed (leading to speculation it was canceled), and during August I was promised that we would hear more this year. Today that time has come, with AMD launching its 3rd Generation Threadripper platform for the high-end desktop market. With two processors and 12+ motherboards available, AMD is going above and beyond the previous definition of high-end desktop.

Threadripper: Redefining HEDT Yet Again

AMD’s march on the high-end desktop market since the launch of the first generation of Ryzen has been somewhat brutal. In a market where we were barely moving up by an average of less than 2 cores a generation, in the last three years AMD has slapped 8-cores in the mainstream and 16 for HEDT, swiftly followed up by 32 in HEDT then moving mainstream up to 16, all while the competition rushed to get something up to 18 cores available. The first generations of products, on the Zen and Zen+ microarchitecture, were about AMD being aggressive in pricing and core counts in order to provide high parallel throughput machines. With the launch of Zen 2 for the Threadripper series today, AMD is now going after raw throughput, and combining that with almost double the number of cores that Intel can offer.

When Threadripper as a brand came to market, AMD promoted it as a product that could tackle any high-parallel throughput tasks. Thread + Ripper was a clever play on words: anything that had plenty of threads, the hardware was designed to ‘rip’ through the workload. The only downsides to this hardware was the lack of true AVX2 support (a key addition for some of these workloads), that the per-MHz performance was still a little behind, and that the way the hardware was arranged led to memory access variances that didn’t work great in all scenarios. With the third generation Threadripper being launched today, all of those issues go away: we get AVX2, we get better per-MHz performance, and a more unified memory solution. That’s on top of PCIe 4.0 support, more PCIe lanes, and faster DRAM. On paper alone, one has to ask what the flaws are.

Today’s launch covers two products: the 24-core TR 3960X and the 32-core TR 3970X. Both of these processors are built from four Zen 2 chiplets paired with a single I/O die, with each chiplet having 6 cores or 8 cores respectively. Both CPUs support 64 PCIe 4.0 lanes, four DDR4-3200 memory channels, and are built on a new sTRX4 socket with a new all-AMD TRX40 chipset.

 
AMD Threadripper 3960X and AMD Threadripper 3970X

AMD has also lifted the lid on an upcoming 64-core variant, called the TR 3990X. We’re covering that news in a separate post, but in a nutshell AMD is bringing its high-frequency variant of the 280 W EPYC 7H12 to the mass market in 2020, with potential room for a 48-core version as well. Just don’t ask how much that one will cost: the ‘slow’ 225W version of the 7H12 has an MSRP of $6950, so the Threadripper version is going to be at least 2x the 32-core $1999 price.

AMD HEDT SKUs
AnandTech Cores/
Threads
Base/
Turbo
L3 DRAM
1DPC
PCIe TDP SRP
Third Generation Threadripper
TR 3970X 32 / 64 3.7 / 4.5 128 MB 4x3200 64 280 W $1999
TR 3960X 24 / 48 3.8 / 4.5 128 MB 4x3200 64 280 W $1399
Second Generation Threadripper
TR 2990WX 32 / 64 3.0 / 4.2 64 MB 4x2933 64 250 W $1799
TR 2970WX 24 / 48 3.0 / 4.2 64 MB 4x2933 64 250 W $1299
TR 2950X 16 / 32 3.5 / 4.4 32 MB 4x2933 64 180 W $899
TR 2920X 12 / 24 3.5 / 4.3 32 MB 4x2933 64 180 W $649
Ryzen 3000
Ryzen 9 3950X 16 / 32 3.5 / 4.7 32 MB 2x3200 24 105 W $749

Both of our new TR CPUs have a 280W TDP, which means they will require substantial cooling regardless of the system they are in. This is a step higher than the peak 250W TDP we saw with previous generation Threadripper processors, as we are probably approaching a realistic limit as to how high consumer processor power numbers should go without sticking them into a server. This means that the new TRX40 motherboards are built to be hard and tough, and also support overclocking.

AMD is pricing these two processors at $1399 and $1999, which also means that AMD’s high-end desktop processors start at a price (and a core count) above where Intel’s HEDT market finishes. Intel’s best chip in this market is the Core i9-10980XE, which has 18 cores and an OEM price of $979, which is a way below the TR 3960X with 24 cores and a retail price of $1399. For the first time in living memory, AMD and Intel are launching their CPUs on the same day, and you can catch our separate Core i9-10980XE review at AnandTech today.

New Socket: sTRX4

One of the key messaging when AMD launched its first Ryzen processors was set to be the longevity of its consumer platforms. Technically the mainstream Ryzen AM4 socket has now gone through four generations of products, and if it weren’t for some poor BIOS choices in the early days, every AM4 motherboard should have been able to support the oldest to the newest AM4 processor. But it does mean a single socket has scaled from a peak of 4 cores when it was first launched all the way to 16 cores.

With Threadripper, it has been a little different. The transition from PCIe 3.0 to PCIe 4.0 has been a tough one to manage, especially when trying to keep parity with sockets and chipset compatibility. The main issue has been PCIe 4.0 validation: supporting PCIe 4.0 with the traces on a motherboard is difficult to the point that the board has to be built with PCIe 4.0 in mind in order to adequately qualify. On top of that, AMD has seen an opportunity to usurp the competition, and has changed the CPU-to-chipset bandwidth link from PCIe 3.0 x4 to PCIe 4.0 x8, quadrupling the total amount of CPU-to-chipset bandwidth available. This is ultimately what breaks compatibility between the previous Threadripper motherboards and the new Threadripper motherboards.

In order to cater for Zen 2, there are also some pin-out changes, however AMD stated that they kept the physical socket the same. What was surprising is that AMD stated that they kept the keying, the little notches that make it easier to see if a CPU is/isn’t supported, the same as well. This means that you can physically fit a new TR CPU in an old motherboard and vice versa. When asked what would happen if you did, AMD said that the system will just refuse to boot. I won’t be the first one to try that, in case the magic smoke appears.

From our pre-briefings, we’ve identified 12 new sTRX4 motherboards bearing the TRX40 name for new TR3 users to get hold of. These are all pretty expensive, in order to both support the CPUs and have the latest technology, and we will have our overview report on these out later this week. Stay tuned for that.

Competition for 3rd Generation Threadripper

In each of these reviews, we try and take a look at what CPUs our new hardware is going to compete against. In this instance, AMD has zero competition from Intel without going into Intel’s enterprise range of hardware. When AMD starts at 24-cores and $1399, while Intel finishes at 18-cores and $979, there is no overlap here – the price difference is substantial enough for each side of the equation not to be involved with each other. If we started looking into the Xeon range from Intel, we’re adding in RDIMM support which TR3 doesn’t have, and the added cost of RAS features and vPro etc.

Intel vs AMD
HEDT
Core
i9-10980XE
AnandTech TR
3960X
TR
3970X
18 / 36 Cores / Threads 24 / 48 32 / 64
3.0 GHz Base Frequency 3.8 GHz 3.5 GHz
4.6 / 4.8 GHz Turbo Frequency 4.5 GHz 4.7 GHz
18 MB L2 Cache 12 MB 16 MB
24.75 MB L3 Cache 128 MB 128 MB
256 GB DRAM Capacity 512 GB 512 GB
DDR4-2933 DRAM Frequency DDR4-3200 DDR4-3200
48 PCIe Lanes 64 64
165 W TDP 280 W 280 W
$979 (1ku) Price $1399 $1999

Technically I’m going to pull one CPU out here, the Xeon W-3175X. This is a 28-core unlocked processor that Intel launched last year to much fanfare, but with four less cores than the 3970X and another +50% in cost, well, the benchmarks speak for themselves.

CPU Pricing
AMD
(MSRP Pricing)
Cores AnandTech Cores Intel*
(OEM Pricing)
    $2000+ 28/56 Xeon W-3175X ($2999)
TR 3970X ($1999) 32/64 $1750-$1999    
    $1500-$1749    
TR 3960X ($1399) 24/48 $1250-$1499    
    $1000-$1249    
    $900-$999 18/36 Core i9-10980XE ($979)
    $800-$899    
Ryzen 9 3950X ($749) 16/32 $700-$799 14/28 Core i9-10940X ($784)
    $600-$699 12/24 Core i9-10920X ($689)
    $550-$599 10/20 Core i9-10900X ($590)
    $500-$549 8/16 Core i9-9900KS ($513)
Ryzen 9 3900X ($499) 12/24 $450-$499 8/16 Core i9-9900K/F ($488)
    $400-$449    
Ryzen 7 3800X ($399) 8/16 $350-$399 8/8 Core i7-9700K/F ($374)
Ryzen 7 3700X ($329) 8/16 $300-$349    
    $250-$299 6/6 Core i5-9600K ($262)
Ryzen 5 3600X ($249) 6/12 $200-$249    
Ryzen 5 3600 ($199) 6/12 Below $200 4/4 Core i3-9350K ($173)
*Intel quotes OEM/tray pricing. Retail pricing will sometimes be $20-$50 higher.

Ultimately AMD’s competition for the new Threadripper processors are the old Threadripper processors: the 32-core 3970X can compete against the 32-core 2990WX. But this isn’t so much of a competition as an evolution: the 3970X has a newer Zen 2 core for more IPC, a higher frequency, a unified memory system, and supports PCIe 4.0. On paper, you’d say that previous Threadripper processors pale in comparison. There’s going to be a lot of that in our following benchmarks.

Power Consumption: 6-13W Per Core
Comments Locked

245 Comments

View All Comments

  • mkaibear - Monday, November 25, 2019 - link

    Intel had revenue of 19.2bn last quarter. The highest it's ever been for them.

    https://www.anandtech.com/show/15030/intel-announc...

    Claiming that Intel is destroyed is laughable.

    They're hurting at the moment, but then they were hurting in the Athlon era as well... and that didn't go so badly for them in the end.

    For reference, AMDs revenue for the same period was 1.8bn. yes, Intel, despite all their problems, earned *ten times* what AMD did.

    (Reference: https://www.anandtech.com/show/15045/amd-q3-fy-201...

    Claiming Intel are destroyed is just fanboyism at its worst.
  • Xyler94 - Monday, November 25, 2019 - link

    Unless Intel can get something out sooner rather than later, people are migrating to AMD because they are pushing things forward. 64 cores of Epyc fury is hitting them in the Server Space, which is where Intel is most scared of. They don't care that you or I buy an Intel chip or an AMD one, they care if Microsoft or Apple buys either or.

    Intel isn't destroyed, but they will be hurting for a while, as AMD is showing no signs of slowing down, and Intel has to beat what AMD makes next, not AMD today.
  • mkaibear - Monday, November 25, 2019 - link

    Again, Intel have record earnings this last quarter. As in over the last 3 months. As in after two years of AMD kicking their backside in the server space they're still making record amounts of revenue.

    Intel aren't stupid, they're one of the most ruthless companies in the sector. They can throw five times as much as AMD's *total profit* in R&D and still make five times as much profit as AMD does.
  • Xyler94 - Monday, November 25, 2019 - link

    Record breaking earnings mean nothing in the grand scheme of things.

    For as much as you gloat about Intel's RND, AMD is the one who's on top in 2 of the 4 markets (Laptops, Desktops, HEDT and Servers), some would argue 3. Doesn't matter how much money you can throw at a problem, it matters if you can solve it. AMD solved the problem, Intel hasn't, and it's a frantic state at Intel to make something happen, either get 10nm working better or changing their uArch in 14nm.

    Right now, the only reason to consider a XEON over an Epyc would be for AVX-512 only workloads. Because otherwise, ServerTheHome has shown that Epyc dominates, especially the 7742 64 core part.
  • SwackandSwalls - Monday, November 25, 2019 - link

    Those record breaking earnings (i.e. capital) mean a lot, and saying otherwise displays a large and intentional ignorance on how important capital is to the microprocessor industry. Intel can use that money to hire more both hardware and software talent, fund more research, build more fabs, outspend AMD in marketing, and on and on. If Intel had huge cash reserves but was putting up large losses every quarter then I'd be on board with your "grand scheme of things" comment. In reality they are massively profitable, selling more 14nm chips than they can produce, and have enough cash to not only learn from AMD's successes but also invest in following suit.
  • Xyler94 - Monday, November 25, 2019 - link

    Again, Hire all you want, throw as much money as you want. That doesn't matter if there's no results.

    AMD with literally tenths of Intel's funding can beat them, and have found better ways to make processors to increase core counts without sacrificing efficiency. Intel also needs to spend a lot of money on researching the node itself, AMD doesn't, so not all of Intel's RnD goes to making the CPU, lots of it goes into making the node itself.

    So while Intel may make more, they have to spend way more, especially since CPUs aren't the only thing Intel makes (They make flash chips, 3D XPoint, Networking chipsets, and many other products, all vying for that sweet RND cash)

    So while Intel makes more, they also spend more. Revenue is a great figure to look at on paper, but it doesn't amount to anything unless the spending is done wisely. AMD surely has shown that it doesn't take Intel levels of cash to become a market leader and capitalize on someone who's grown complacent.
  • milkywayer - Monday, November 25, 2019 - link

    "record breaking numbers mean a lot".

    So what happened then, why is AMDs offering more power and cost efficient at a much much lower price?
  • Korguz - Monday, November 25, 2019 - link

    mkaibear/SwackandSwalls, and point is ?? intel has all that money, yet.. been milking the SAME architecture for how many years ? as Xyler94 already said.. to keep throwing money at a problem, and it STILL doesnt get fixed, is NOT a good thing. AMD may not have the money that your beloved intel does, but guess what, they have been able to do MORE with what they do have, so tell me who is spending wiser ?? also.. how much of that 19.2 billion has intel had to dump into their fabs??
  • imaheadcase - Monday, November 25, 2019 - link

    I really hope you are not comparing Intell vs amd based on a just a CPU..that is illogical.
  • TEAMSWITCHER - Monday, November 25, 2019 - link

    Intel isn't "hurting" now... Desktop processors are not what most people want.

Log in

Don't have an account? Sign up now