Today Intel is launching a new NVMe SSD for consumers. The Intel SSD 760p is a M.2 SSD featuring Intel's 64-layer 3D TLC NAND flash and a new Silicon Motion controller, and it will compete as an entry-level NVMe SSD.

Based on the model number, the Intel SSD 760p would appear to be successor to the Intel SSD 750. However, the 750 was a top of the line premium SSD for its time, and Intel's Optane products are now covering that market segment. The 760p is a mainstream consumer product with accessible pricing that is slightly lower than the Intel SSD 600p, which has been one of the cheapest NVMe drives on the market. The 600p was Intel's first consumer SSD with 3D NAND and their first M.2 NVMe SSD, and it was also one of the first NVMe SSDs that wasn't even trying to compete at the high end. The 760p promises far better performance than the 600p, but not enough to catch up to today's high-end SSDs.

The Intel SSD 760p is a continuation of Intel's close collaboration with Silicon Motion for consumer SSD controllers. As with the 600p, the 760p features an Intel-customized version of Silicon Motion's reference design and firmware. Where the 600p was based on the SM2260 controller, the 760p is the first drive to market based on the SM2262 controller, the mid-range option from Silicon Motion's second generation of NVMe controllers. Silicon Motion has previewed these controllers last year with far higher performance than the SM2260 could deliver, and the Intel 760p is following through on those promises.

The flash memory used in the Intel SSD 760p is the same 256Gb 64L 3D TLC NAND found in the Intel 545s SATA SSD, and is similar to Micron's 64L 3D TLC as found in the Crucial MX500. Other NAND flash manufacturers have also moved to 64L 3D NAND: Western Digital/SanDisk are using theirs in the WD Blue 3D NAND aka SanDisk Ultra 3D, Toshiba's is found in the TR200 budget SATA SSD, and Samsung's 64L 3D NAND is used in the new 860 PRO and 860 EVO. Intel/Micron 3D NAND is still unique for using a floating gate memory cell structure where their competitors switched to a charge trap cell as part of the transition from planar to 3D NAND.

This year, we will see most manufacturers switch from 256Gb 64L TLC parts to 512Gb 64L TLC, but the Intel 760p still uses the smaller die, which enables higher performance for low-capacity drives.

Intel SSD 760p Specifications
Capacity 128 GB 256 GB 512 GB 1 TB 2 TB
Form Factor M.2 2280 single-sided M.2 2280 double-sided
Controller Intel-customized Silicon Motion SM2262
NAND Intel 256Gb 64-layer 3D TLC
Sequential Read 1640 MB/s 3210 MB/s 3230 MB/s TBA TBA
Sequential Write 650 MB/s 1315 MB/s 1625 MB/s TBA TBA
4KB Random Read  105k IOPS 205k IOPS 340k IOPS TBA TBA
4KB Random Write  160k IOPS 265k IOPS 275k IOPS TBA TBA
Idle Power 25 mW TBA TBA
Endurance 72 TBW 144 TBW 288 TBW 576 TBW 1152 TBW
Warranty 5 years
Price $72.99 (57¢/GB) $108.99 (43¢/GB) $198.99 (39¢/GB) TBA (Q1 '18) TBA (Q1 '18)

Today's launch includes 128GB, 256GB and 512GB capacities of the Intel 760p, with the 1TB and 2TB models coming later this quarter. All the major performance specifications are much faster than the 600p, and most of them also beat the obsolete Intel SSD 750. The write endurance is rated the same as for the 600p at 72 TB of writes per 128GB of drive capacity, equivalent to about 0.3 drive writes per day, a typical figure for consumer SSDs.

Performance specifications for the 1TB and 2TB models have not been released, but they will probably not be much faster than the 512GB model. The 128GB and 256GB models are clearly held back some by their limited capacity, but the 512GB's performance specs are close to Silicon Motion's projections for what the SM2262 controller would be capable of.

Intel's pricing for the 760p is competitive, with initial MSRPs at or slightly below current street prices for the Intel 600p and most other low-end NVMe drives. The 760p will not hold the 600p's distinction as the cheapest NVMe drive on the market, because a wave of new low-end NVMe drives is arriving. These drives feature cheaper controllers specifically designed for low-end NVMe SSDs, cutting costs by using a PCIe x2 connection instead of x4, or by omitting DRAM in favor of using the NVMe Host Memory Buffer feature. Those drives will enable NVMe SSDs to further encroach on the pricing territory of SATA SSDs, but they may not be able to match the Intel 760p on performance.

As with Intel's other recent consumer SSDs, there will also be variants for the business and embedded markets. Those models will be branded as the Intel SSD Pro 7600p and the Intel SSD E 6100p.

For this review, the Intel SSD 760p will be compared against:

  • Intel's previous consumer NVMe SSDs, the high-end Intel SSD 750 and the low-end Intel SSD 600p
  • Various Samsung M.2 NVMe SSDs, including the retail 950 PRO, 960 PRO and 960 EVO and the OEM PM981 that is likely to be similar to Samsung's next retail EVO NVMe drive
  • The Toshiba XG5 OEM SSD, based on 64-layer 3D TLC NAND. Toshiba's next high-end consumer SSD will likely either be based on the XG5 (the way the RD400 and XG3 share a common platform), or based on this NAND and an updated controller
  • Other budget NVMe SSDs using TLC NAND: the Western Digital WD Black that is due for an update to 3D NAND, and the ADATA XPG GAMMIX S10 that is based on a similar controller and NAND combination to the Intel SSD 600p
  • Various MLC-based NVMe SSDs that represent last-generation mainstream NVMe performance: the Plextor M8Pe, Toshiba OCZ RD400, Patriot Hellfire.

Absent from this review are members of the upcoming class of NVMe SSDs with controllers designed for the low-end NVMe segment. We have a Silicon Motion SM2263XT engineering sample on hand that is our first drive using the NVMe Host Memory Buffer feature and thus requires more testing than usual. The MyDigitalSSD SBX—the first drive using the Phison E8 controller—just arrived and will get its turn on the testbed next month.

Today's review of the Samsung 860 PRO included synthetic benchmarks conducted with a slightly updated test protocol using fio version 3 for more precise timing measurements. There wasn't time to re-test the necessary NVMe drives for this review, so these results were measured with the older 2017 test scripts using fio version 2.21. Re-testing of our full catalog of SSDs is in progress using the updated scripts and our new Quarch XLC Programmable Power Module for more precise power measurements.

Additionally, both of today's reviews were conducted with systems that have not yet been patched in any way for the Meltdown and Spectre vulnerabilities. A separate testbed has been running tests to measure the impact of various mitigation strategies for those vulnerabilities.

AnandTech 2017 SSD Testbed
CPU Intel Xeon E3 1240 v5
Motherboard ASRock Fatal1ty E3V5 Performance Gaming/OC
Chipset Intel C232
Memory 4x 8GB G.SKILL Ripjaws DDR4-2400 CL15
Graphics AMD Radeon HD 5450, 1920x1200@60Hz
Software Windows 10 x64, version 1703
Linux kernel version 4.12, fio version 2.21
AnandTech Storage Bench - The Destroyer
Comments Locked


View All Comments

  • Makaveli - Tuesday, January 23, 2018 - link

    Its not on the charts because this is a review of budget drives.

    There would be no point to adding it to this review its in a different performance segment.
  • emvonline - Tuesday, January 23, 2018 - link

    and you cant put it in a notebook
  • iwod - Wednesday, January 24, 2018 - link

    I think we have come a long since the first SSD review on Anandtech. And we still have yet to determined the one benchmarks that is representative of real world usage.

    With these sort of SSD performance I wondered if we are still bottlenecked by IO at all.

    The Intel 512GB is now under $200 for MSRP, I bet street price will be even lower, and $100 cheaper then Samsung. While the 128GB and 256GB is much closer, mainly because the cost of controller is fixed, contributing to the bottom line pricing.

    Which is why I am sadden, and a little angry, how Apple in 2018, being one of the largest NAND buyer and has an economy of scale, their own SSD Controller, is STILL shipping a HDD on iMac.
  • xchaotic - Wednesday, January 24, 2018 - link

    So why would I want this over the slightly faster and cheaper 960 EVO? (espeically at 256GB it's faster)
  • solar75 - Tuesday, January 30, 2018 - link

    Dear BILLY, could you please test several NVME drives in several laptop models to see which ones provide the best speed? I think this will be a very popular review.
  • Shirley Dulcey - Friday, August 31, 2018 - link

    Half a year later we can see where the pricing has gone, and it's in a pleasant downward direction.

    I recently bought a 256GB 760p for a lower-end build (Ryzen 5 2400G, also a bargain at $110) and it's performing very well in that application. It was $60 that day ($65 right now), making it the least expensive option at that capacity other than the store brand drive. The 512GB is $125, but in that capacity class the Crucial MX500 is even more aggressively priced at $100. All in all a great time to be buying an SSD and CPU, but still a lousy one for RAM.
  • andras1 - Friday, February 8, 2019 - link

    So is the 500 GB Intel 760p better in every single aspect (including latency, power, and small random writes/reads) than the 500 GB SATA Samsung 860 EVO?
  • andras1 - Saturday, February 9, 2019 - link

    How about full throttle maximum write/read speed power consumption?
    In which applications is 60ms wake up latency typically a problem? What does this translate to for the average user? Using Visual Studio for programming? Gaming? Internet? Video watching? Handling files?
  • FastCarsLike - Friday, May 24, 2019 - link

    I don't get it, how is it still "TBD", this has been out for almost a year now.
  • ktan112 - Tuesday, July 23, 2019 - link

    Is my Intel 760p dying, I'm getting less than half the performance of your results from testing:

Log in

Don't have an account? Sign up now